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Résumé

« Frobenius discovered a remarkable connexion between the spec-
tral properties of an irreducible matrix and its zero pattern, that
is the distribution of its zero entries » (Henryk Minc, in « Non-
Negative Matrices »).

L’objet de ce travail est I’étude de l’évolution des zéros qui
s’affichent dans les puissances d’une matrice non-négative.

M, éventuellement N ou A, désignera une matrice & n lignes
et colonnes; lorsque la confusion est possibles nous distinguerons
(au moins dans notre esprit) la matrice « encore vide », que nous
appellerons « tableau », de la matrice au sens usuel, lorsque des
valeurs sont assignées aux cases du tableau;

On appellera zéros de M? les termes nuls de ces matrices, on
appellera support des zéros de M? ’ensemble des cases qui affi-
chent la valeur zéro dans la matrice M? et le support de M?t sera
noté Z(M?). Les zéros des puissances de M vont étre de plusieurs
types, périssables (qui disparaissent avec le temps), persistants
(qui sont nuls pour toute puissance M?) ou périodiques ( la suite
des supports des zéros se répéte de maniére périodique.

a élaguer

La nature de ces zéros va présenter des correspondances avec
les notions de réductibilité et de primitivité des matrices; en par-
ticulier les zéros persistants se regroupent suivant des structures,
que nous appellerons essaims et qui représentent les obstacles a
I'irréductibilité. La prise en compte des essaims nous permettra
une démonstration élémentaire de la forme normale de Frobenius.
Nous distinguerons le cas ou la diagonale de la matrice M est
positive du cas ou elle ne ’est pas, ce qui nous permettra d’étudier
la primitivité éventuelle de M ainsi que la périodicité éventuelle de
la suite des supports des zéros.

1 Définitions et conventions de base

Nous nous limiterons & des matrices non-négatives.

Nous conviendrons, une fois pour toutes que "non-négatif" signifie supé-
)
rieur ou égal & 0 et “positif ” signifie strictement supérieur a 0.
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Si M désigne une matrice non-négative on désignera par (i,j) la case du
tableau dont les coordonnées sont x=i,y=j, par my; ;) la valeur affichée
dans la case (i, j) de M, par M*® pour t entier la puissance t-i¢éme de M, par
mEtl] ) la valeur affichée dans la méme case de la matrice M?; nous dirons
aussi que la case (i, j) est dans l’état mEti]yj) a l'instant t.

Si nous désignons par Y(M?) la matrice définie par

t
Y= 1= m{g ;) #0
t]
i) =0
Z(M®*)=Z(M?") alors Z(M*TY)=Z(M'*1'), ce qui permet de démontrer
par récurrence que Vt € N*, s > 0, Z(MY)=Z(M!**)=Vk € N,
Z(Mt+k):Z(Mt+s+k);.

Reprenant le langage des systémes dynamiques nous dirons que Z(M?)

décrit I’état d’un systéme « sans mémoire ».

[ alors Z(MM"=Z(MY(M?")), donc si
y(z’J):Oc)m(

Dans un premier temps nous ne considérerons (sauf indication contraire)
que des matrices a diagonale positive.

Nous appellerons zéro persistant une case (i,j) telle que pour tout t
mEti]_’j):O et zéro périssable une case (i,j) telle que {teN, mEti]_’j):O } est

borné.

La section 2 d’essence topologique introduit la notion de support des zéros
pour étudier les ensembles qu’ils forment. Nous verrons que si la matrice
considérée est a diagonale positive la suite des supports des zéros Z(M?)
est décroissante et ultimement stationnaire; a chaque incrémentation de t
disparait au moins un zéro périssable.

La section 3 introduit la notion d’essaim, sous-matrice de taille p x (n —
p) associée & deux ensembles d’indices complémentaires et établit que les
configurations de nuls persistants sont les réunions d’essaims nuls.

La section 4 établit dans le cas d’une matrice non-négative & diagonale
positive I’équivalence entre la réductibilité et la présence d’essaims nuls; il est
a noter que le lien entre réductibilité et présence d’une sous-matrice extraite
de taille px(n — p), associée a deux ensembles d’indices complémentaires,
est connu, mais pas le statut persistant des zéros qu’elles affichent.

La section 5 est consacrée a une démonstration élémentaire du Théoréme
de la forme normale de Frobenius pour une matrice non-négative, a diago-
nale positive ou nulle.

La section 6 considére le cas des matrices non-négatives a diagonale
non positive; a la correspondance réductible-présence d’essaims nuls s’ajoute
celle entre matrices primitives et absence de zéros périodiques.

La «semi-positivité » de la diagonale, c’est & dire le cas ot un des termes
de la diagonale au moins est positif, est une condition nécessaire,mais non
suffisante de primitivité.

La section 7 est essentiellement consacrée au cas ol la diagonale est nulle.
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La section 8 porte sur la question de la périodicité éventuelle de la suite
des supports des zéros de la suite (M?).

2 Un regard topologique

Définition 1. Support des zéros d’une matrice

Soit une matrice A a n lignes et colonnes on appelle support des zéros
de A, que l'on notera Z(A), ’ensemble des cases (i,j) €{1,..,n}? qui sont
dans ’état nul.

Proposition 2. Une petite grammaire pour la fonction Z

Soit M,N deux matrices non-négatives et k € Z*

i) Z (kM) = Z(M),

i) Z(M+N)=Z(M)NZ(N).

iii) si M-N est non négative Z(M-N) est I’ensemble des (i,j) tels que
mi, ;3 ="4,j-

Démonstration. La premiére affirmation est évidente. La seconde découle
du fait simple que la somme de deux entiers naturels n’est nulle que si et
seulement si les deux sont nuls. La troisiéme découle directement de la
définition. O

Définition 3. Distance entre points de {1,..,n}?, distance de Hausdorff de
deuz parties de {1,..,n}? associée a cette distance

Soient (x = (x1, x2), y = (y1, y2)) on désignera leur distance par d (z,
y) = w1 =y + w2 — yol.

Soient deux parties A et B de [1,..,n]*, on appellera distance de Haus-
dorff de A et B la borne inférieure de {e,Va€ A,Ib€ B,d (a,b)<e} et de
{e,Vbe B,Jac A,d(a,b) <e} (nous admettrons qu’il s’agit d’une distance
sur l’ensemble des parties du tableau {1,..,n}?. [6]

]2

Proposition 4. Une suite (Z;,t € N*) de parties de {1,..,n}? converge au
sens de Hausdorff si et seulement si il existe to, tel que Yt >ty, Zy = Zy,.

Démonstration. Il suffit de remarquer que dans notre cas la distance de
Hausdorff est nécessairement un entier non négatif. (|

Définition 5.
Soient M une matrice non-négative et la case (i,j)€[1,..,n]?, dans l’état

nul a Uinstant t, on dira qu’il s’agit d’un zéro persistant lorsque Yk € N7
(k]

m;. =0, ce sera un zéro périssable lorsque Ity e N*, Vit > tg, mEIE]_j) =1.

Lemme 6.
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Soit M une matrice non-négative a diagonale positive la suite des sup-

ports de zéros est décroissante et minorée par l’ensemble vide; si le nombre
de zéros périssable est t1 alors ¥t >t1, Z(M") = Z(M™).

Démonstration. Dans le cas de diagonale positive alors par définition,

[t+1]_ (1]

M) = M) Mo(w,0) T Zk;&ymgﬂ,k) M(k,v), or chacun des termes du membre

1] (]

de droite est non négatif, sauf m, ., et M) qui sont positifs donc My ) >

0=mlF~ .

(u,v)

Donc si (i, j) appartient a (Z(M®+1)) alors (i, j) appartient aussi a
(Z(MM)), dou la suite (Z(MM, ¢t e N*) est décroissante au sens de I'inclu-
sion.

Comme c’est une suite monotone & valeurs dans un ensemble fini, elle
est alors convergente et nous avons vu plus haut qu'une suite, convergente
pour la distance de Hausdorff dans 'ensemble des parties de {1, ..,n}?, est
constante & partir d’un certain rang, c’est-a-dire qu’ il existe un rang t a
partir duquel les supports de zéros sont identiques, éventuellement vides.

De plus dans le cas d'une matrice non-négative & diagonale positive les
zéros ne peuvent pas apparaitre mais ils peuvent disparaitre.

Nous avons vu que le systéme est « sans mémoire », par suite si a 'ins-
tant top aucun zéro ne « disparait », alors Z(M[t"]):Z(M[tUH]), d’ou Z reste
constante a partir de tg, ce qui signifie qu’a partir de %, il ne reste plus que
des zéros persistants. [l

Exemple 7. On consideére la matrice

1010 1011 2122
o101 , 1212 s | 3435
Sot M=t g1 M=l 1111 | M=[2223|

1111 29223 5557

Inutile de continuer, le support Z(M?3) est ’ensemble vide, la
ports de zéros est convergente vers l’ensemble vide.

V)

uite des sup-

Exemple 8.

Z(MW) tend vers ['union des essaims nuls (voir section suivante)

1111 2322 4 747
0101 2 1 0202 3.1 0304 i e
M= 1010 , M*= 919 1 , et M°= 1111 , L’égalité

0101 0102 0304
Z(M?)=Z(M) entraine que la suite des supports de zéros est (ultimement)

s
. . 0 0
constante et égale ou {(2,1),(2,3),(4,1),(4,3)}.
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En résumé:
diagonale positive
essaim nul =7 (M?) tend vers 'union des essaims nuls (voirsection sui-
vante)

pas d’essaim nul=Z7(M?) tend vers l’ensemble vide

3 Les zéros persistants des matrices non-néga-
tive & diagonale positive.

Comme nous considérons le cas de matrices non-négative a diagonale posi-
tive nous pourrons supposer que la matrice considérée ne comporte plus que
des zéros persistants.

Définition 9. essaim

Sotent M une matrice non-négative a n lignes et colonnes et une partition
(I,J) de Uensemble des indices {1,..,n}, on désignera par Ty y le sous-
tableau de T obtenu en effacant les lignes dont le numéro est dans J et les
colonnes dont le numéro est dans I et par M j la sous-matrice obtenue en
affectant des valeurs auzx cases de Ty j. My, j sera appelé un essaim, nous
nous intéresserons particuliérement auxr essaims nuls.

Proposition 10.

Soit une matrice non-négative M et un essaim nul My j alors [lessaim
M]2,‘] est nul

Démonstration.

Soit un essaim nul M; ; et considérons une case (u,v) de Ty s, ce qui
signifie que u € I et v € J, si cette case affiche dans a la valeur Oy ) la valeur
affichée dans cette méme case de A2 sera a[Q](uyﬂ) = Zke[l,..,n] Uy, k) Ak, v)s
qui s’exprimera, comme (I, .J) est une partition de {1,...,n}, sous la forme
2 ke u k) W) T D k) Alk,v):

Si k appartient & I, comme v appartient & J, a¢, ) =0 et si k appartient

a J, comme u appartient a I, ai],k) =0, d’out la valeur affichée dans la case
(u,v) de A? est nulle.

De méme, comme (I,J) forment une partition de {1,..,n}, A%;=0 entrai-
nera A}y =0 et, de maniére générale, {y=0 entraira A%} =0.
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D’autre part la décroissance de la suite (Z(A2")) qui découle du raison-
nement du lemme 6 permet de conclure que les cases de ’essaim sont nulles
a tout ordre ce qui démontre que les cases de ’essaim nul Ary sont des zéros
persistants. [l

Théoréme 11.

Soit A une matrice non-négative a diagonale positive, si une droite (ligne
ou colonne) comporte p (supérieur ou égal & 1) zéros persistants il existe
un essaim nul qui les contient et tout essaim nul est un ensemble de zéros
persistants.

Démonstration.

Nous étudierons le cas d’une colonne, celui de la ligne est analogue.

Soit le point (i,j) et supposons que p cases de la iéme colonne dont la
case (i,j) portent des zéros persistants d’ou les deux ensembles d’indices I
de cardinal p, défini par I={u,a(,, :aaj) =0} et J={k,aq, ;) =1}

Ainsi défini le couple (I,J) est une partition de {1,..,n} et I désigne les
zéros de A qui se trouvent sur la colonne (de A') qui contient le point (i,j).

De son co6té quel que soit uel agjj):zke[l’_”n} A(u,k) O(k,;) d’oul
Zke[l,..,n] A(y,k) A(k,5) = 0 que I'on peut décomposer en Zke[a(uvk) a(k, )+
Zke_]a(,u7k) a(k, =0, qui se simplifie, en tenant compte des définitions de
Tet J,en 0+, aqml.

D’ou

Vuel,VkeJ,aw k=0, ce qui signifie que J désigne des zéros de A qui
se trouvent sur la ligne qui contient le point (i,j) et, comme u décrit I et k
décrit J, la matrice extraite Ay s est nulle.

Réciproquement soit un essaim nul Ay et considérons une case (u,v)
de 17, ;, ce qui signifie que u €1 et v € J. Si sa valeur & l'instant t=1 est
Ay,v)> a l'instant 2 ce sera Zke[l,..,n} A(u,k) Ok,v)» qui s’exprimera, comme
(I, J) est une partition de {1,...,n}, sous la forme »7, _; a(y k) @(k,v) +
2kes O (u,k) Alk,0)-

Si k appartient & I, comme v appartient & J, a¢, ) =0 et si k appartient
a J, comme u appartient a I, a(, 1) =0, d’ott la valeur de la case (u,v) de A?
est nulle.

On conclut comme dans la proposition 10.

Par suite, comme (I,J) forment une partition de {1,..n}, A; ;=0
et A%J:o entrainent A§7J20 et, de maniére générale, A; y=0 et A}J:
0 entrainent Aff =0; ce qui démontre , par récurrence, que les cases de
Pessaim nul Ay ; sont des zéros persistants.
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O

Exemple 12. Dans la matrice ci-dessous on voit un essaim nul de 2 lignes
et 4 colonnes, un essaim nul de 3 lignes et 3 colonnes et un essarm nul de

100000
010000
110000
5 lignnes et une colonne. M=| 1 0 1 0 0 0O
000110
00000O00O0
000101

On peut alors étendre cette caractérisation aux matrices non-négatives
qui ont une diagonale nullle:

Théoréme 13. diagonale nulle et zéros persistants

Soit une matrice non-négative a diagonale nulle, M et N=M+1.

Quel que soit le couple (i,j), ou i+ j (i,j) est un zéro persistant pour M
st seulement st il l’est pour N.

La suite (Z(M")) tend vers une limite non vide si et seulement il en est
de méme pour la suite (Z(N*?)) et ces deux limites sont égales.

Démonstration. Soit une case (i,j) hors diagonale, pour tout entier positif
N YA k
t Nt= Zke{07...,t} (;)M’“, d’ott I'équivalence Vk < t, nEi1j) =0<=Vk <t,

myﬁj) =0; par suite (i,j) est un zéro persistant de N si et seulement il I’est

pour M, or comme N est a diagonale positive les zéros persistants de N sont
les cases d’un essaim nul, donc il en est de méme pour M et la limite de la
suite des supports de zéros de M est la limite de la suite analogue pour N,
c’est & dire la réunion des essaim nuls.

Ce qui permet d’étendre la définition d’essaims nuls aux matrices non-
négatives a diagonale nulle.

O

Question 1.

Etant donnée une matrice non-négative M comment trouver un essaim
nul, s’il y en a?

Comme on I’a vu au dessus on peut supposer qu’il ne reste que des
zéros persistants; les essaims étant définis par la donnée de deux intervalles
complémentaires dans {1,..,n}nous allons opérer comme suit:
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Choisir un sous-ensemble de {1,..,n} que l'on désignera par I, déterminer
le complémentaire de I dans {1,..,n} que l'on désignera par J, si My s est
nul c’est un essaim nul, sinon considérer un autre sous-ensemble 1.

Exemple 14.

11000
01000
Soit M=| 0 0 0 0 1
00001
10100

Si on considére la colonne 1 1={2,3,4} d’ou J={1,5} et M2 34} (1,517 =

0 0
0 1 | qui n’est pas nulle; aucun autre raisonnement sur les lignes ne
0 1

nous indiquera d’essaim nul.
Raisonnement sur les colonnes
Si considée la colonne 1 I={3,4,5} et alors J={1,2} et My 2} (34,5 =
000
000

, qui est donc un essaim nul.

4 Matrices non-négatives réductibles et Essaims
nuls

Lemme 15. Soit M une matrice non-négative, elle posséde des zéros per-
sistants si et seulement si il existe une matrice de permutation P telle que

B C
t —
PMP( 0 D

), ou B et D sont des matrices carrées.

Démonstration. Soit M une matrice non-négative qui contient des zéros
persistants et, par suite, un essaim nul My ;.

Une partie de {1,..,n} sera appelée "segment initial" si son minimum est égal
a 1 et si elle est connexe dans {1,..,n}, elle sera appelée "segment final" si
son maximum est égal & n et si elle est connexe dans {1,..n}.
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Rappelons que I indexe les lignes de M j et J indexe les colonnes de
My, 5 . Une sous-matrice My, j occupera le coin Sud-Ouest si et seulement si I
est un segment final et J un segment initial; Notre objectif sera donc atteint
lorsque I sera devenu un segment final (et par conséquent J sera devenu un
segment initial).

Nous allons construire la permutation P comme produit de transposi-
tions. Tant que I n’est pas un segment final (et que J n’est pas un segment
initial) effectuons sur les colonnes de M la transposition P = (min([l),
max (B, I) qui se traduit par I: T —min(I)+max(J) J:J —max(J)+
min(I). Comme le minimum de I croit strictement (et celui de J décroit
strictement) la procédure s’arréte; & ce moment I est un segment final, J est
un segment initial, les zéros de I’essaim sont regroupés en un bloc Sud-Ouest.
Par ailleurs la conjugaison par P conserve les tailles des sous-matrices,
donc le bloc Sud-Ouest obtenu est de taille p x n — p, par suite les matrices
B et D sont carrées.

Réciproquement si on considére une décomposition en blocs N =

0 D
blocs montre que les zéros du bloc Sud-Ouest sont persistants, la multipli-
cation par P & droite et par P & gauche consistant 4 renuméroter les vecteurs
de la base canonique, les zéros de N correspondent aux zéros de *PN P
donc ce sont des zéros d’ordre infini, ce qui entraine ’existence d’essaims
nuls. De plus nous avons aussi obtenu P comme composée de transposi-
tions; cette procédure sera appelée "procédure de relocalisation". O

< BC ), ot B et D sont carrées de cotés respectif n-p et p, le produit par

Définition 16. Matrices réductibles M € M, R*") est dite réductible s’il
B C .

0 D ) ou (B,

D) e MuRY*) x M,,_,R™) et C € My ,,_p,RT). Une matrice irréductible

est une matrice qui n’est pas réductible.

existe une matrice de permutation P telle que 'PM P =

Nous avons montré juste au-dessus qu’ une matrice non-négative M a
diagonale positive est réductible si et seulement si elle posséde un essaim
nul M[J.

Aux diverses caractérisations classiques de la réductibilité (ou de l'irré-
ductibilité) [1] nous ajouterons la suivante:

Théoréme 17. Une matrice non-négative M est réductible si et seulement
s1 elle posséde un essavm nul My ;

Il pourrait étre intéressant de comparer la complexité en moyenne de
la recherche d’un essaim nul (un seul suffit pour que la matrice ne soit pas
irréductible) avec la complexité de I'étude de la connexité forte nécessaire
pour déterminer, de maniére classique, la réductibilité.
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Par ailleurs on remarquera que si l'existence de sous-matrices de la
forme My j, ou (I,J) est une partition de {1,2,...,n}, n’est pas nouvelle ces
matrices n’ont pas été étudiées en elles-mémes. [4]

5 Le Théoréme sur la forme normale de Frobe-
nius (s’appuye sur ce qui précéde mais sans
effet sur ce qui suit)

Nous pouvons désormais démontrer le

Théoréme 18. Le Théoréme de Frobenius
Soit M une matrice non-négative dont les zéros sont d’ordre infini, il
existe une matrice de permutation P telle que 'PM P est de la forme

M11 M12 .. .. Mlp

0 My .. .. My,

0 0 Mss .. Ms, |, ou les blocs M;; sont irréductibles.
0 . e

0 0.. .. .. Mpp

L’ensemble des blocs de la diagonale est unique, a l’ordre prés.

Démonstration. On appellera f I’endomorphisme représenté dans la base
canonique de ’espace M par la matrice A.

On reprend la procédure de relocalisation qui fournit une matrice de
B C
0 D
lui applique la relocalisation d’ot une matrice de permutation R telle que
" [ B1
RBR= ( 0 D,
avec D si celle-ci n’est pas irréductible. On continue ainsi tant qu’appa-
raissent des matrices réductibles. En fin de compte il existe une matrice de

permutation P telle que !PM P = , si B n’est pas irréductible on

) et on remplace B en conséquence. On opére de méme

M11 M12 . .. Mlp
0 My .. .. My
permutation T telle que "T'MT est de la forme 0 0 Mss .. Ms, |,
0 . .
0 0. .. .. Mpp

ou les blocs M;; sont irréductibles. L’irréductibilité des blocs de la dia-
gonale découle de la procédure choisie: lorsqu’un bloc carré est créé, s’il n’est
pas irréductible il posséde un essaim et on procéde a sa relocalisation. [

Si la démonstration présentée ici pour la forme normale semble intéres-
sante car elle est élémentaire et ne nécessite pas d’éléments de la théorie
des graphes, le Théoréme établit aussi dans sa forme classique 'unicité (a
Pordre pres) de la famille des blocs diagonaux; le lecteur est renvoyé
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Démonstration. rs non-négative a diagonale positive, on peut lui appliquer
le Théoréme: il existe une matrice de permutation T telle que “T'BT est sous

M11 M12 .. . Mlp
0 My .. .. My
forme normale 0 0 Mss .. Mz, |[. Parsuite TAT='TBT —I=
0 . o
0 0. .. .. Mpp
M11 -1 M12 .. . Mlp
0  Myp—1I . . My,
0 0 MssI .. Ms, | et ce sera la forme normale de A si
0 o e
0 0.. .. .. Mpp

on prouve que les M;; — I sont bien des matrices irréductibles. Si M;; — I =
( g I}I// ) alors M;; = ( I —g v W‘—/i— 7 ) ce qui contredirait l'irréductibilité
de M”

M;; — I sera & termes non-négatifs si et seulement si les termes de la
diagonale de M;; sont positifs: considérons deux matrices carrées U et V
et une matrice de permutation P telle que U = P~ VP, U décrit le méme
endomorphisme que V mais relativement & des bases qui se correspondent ,
a leur numérotation preés, ce qui signifie que les termes de la diagonale de U
et ceux de celle de V sont identiques, a l'ordre prés.

Par suite les termes des diagonales des matrices M;; sont identiques,
a l'ordre prés, a ceux de la diagonale de B qui sont supérieurs ou égaux

a 1. Donc les matrices M;; — I sont non-négatives, ce qui entraine que
'TAT=tTBT — I est de la forme

Mll—I M12 . .. Mlp
0  Myu—I . .. M,y
0 0  Mss—1I .. Ms, | O
0 . .
0 0.. W My -1

6 Le cas d’une matrice non-négative a diago-
nale non positive

Désormais nous supposerons que la diagonale de M comporte au moins un
zéro; la notion de matrice primitive sera désormais centrale.

Définition 19. Une matrice non-négative M est dite primitive lorsqu’il
existe un entier positif m tel que M™ >0 et le plus petit m pour lequel cette
inégalité est vraie est appelé indice de M. On voit aisément qu’une matrice
doit étre irréductible pour étre primitive.



12 SECTION 6

Une matrice irréducible qui n’est pas primitive , est appelée imprimitive.

Théoréme 20. Une matrice M est primitive si et seulement si ses zéros
sont périssables.

Théoréme 21. La suite des supports de zéros et la primitivité

Soit une matrice non-négative et irréductible M les deux propriété sui-
vantes sont équivalentes:

i) M est primitive

ii) la suite des supports de zéros tend vers I’ensemble vide

Théoréme 22.
Une matrice non-négative irréductible, dont l’'un des termes de la diago-
nale au moins est positif, est primitive. [4]

Démonstration.
Soit k tel que myg x>0 pour tout j il existe un entier ¢; tel que

m'i; ;>0,par suite pour tout entier t supérieur a l'ensemble (fini) des t;
m'; x>0. Deméme il existe un entier s tel que pour tout entier supérieur

as mly ;>0. Dot m?2; ;>0. O

D’o1, si une matrice non-négative et irréductible est imprimitive sa dia-
gonale est nulle; attention cette condition n’est pas suffisante pour que
la matrice soit imprimitive: la matrice suivante est non-négative, irré-
ductible, sa diagonale est nulle mais on pourra vérifier qu’elle n’est pas
imprimitive (par exemple au moyen des méthodes des sections suivantes):

0
M—

O = O
_ O O
o~ OO

O O =

Comme il y avait un indicateur sur le moment de disparition des zéros
périssables (section 2) il existe un indicateur pour qui veut savoir, dans le
cadre de l'irréductibilité, si il y a primitivité ou imprémitivteé.

Proposition 23.
Si M est une matrice non-négative et imprimitive son exposant est infé-
rieur ou égal a (n-1)*+1. [5]

Donc le cas d’'une matrice non-négative irréductible, et dont la diagonale
posséde entre 1 et n-1 termes non nuls, est résolu.

Il ne reste plus que le cas d’'une matrice non-négative, irréductible et a
diagonale nulle.
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7 Sur la période

Le tableau que nous considérons est fini donc les supports des zéros
appartiennent & un ensemble fini, par suite il existe nécessairement deux
entiers distincts s<t tels que Z(M?®)=Z(M?), qui entraine M*=M? | puis
Z(MStH=z(M!*T1) ...

D’ou

Si M est une matrice non-négative et s’il existe deux entiers distincts s<t
tels que Z(M®)=7(M?) la suite des supports des zéros est périodique.

Pour déterminer la période de la suite des supports des zéros:

Proposition 24.

On exprimera les matrices de la forme M! comme combinaison linéaire
des matrices (IM,..,M" =) ot r est le degré du polynéme minimal de M.

Lorsque deux puissances M et MY s’expriment comme combinaisons
linéaires des mémes matrices de la base (ILM,..,M"™ 1) avec des coefficients
non nuls on en concluera qu’elles ont le méme support de zéros.

Alors [t’-t] est candidat pour désigner la période de la suite; il suffira
de rechercher s’il existe un autre couple, « inférieur », pour déterminer la
plus petite période.

Démonstration.

Soit Xt' = Z;;} M XF que nfms traduisons en M' = Z;;} A MF, qule
nous pouvons réordonner en M! = 2/\]00 )\kMk—Z)\k<0D\k [M*, ou MY,
en tant que puissances d’une matrice non-négative, est non-négative.

Nous sommes donc le cas iii) de la proposition 6, Z(Mt,):{(z',j),

o 0
om0 MG ) = Do, <o 1AM } -

Théoréme 25.

Soit une matrice non-négative M

0) la suite (Z(M?)) est bornée

i) si M contient un essaim nul la suite (Z(M?)) converge vers la réunion
des essaims nuls.

ii) s’il existe un entier positif to tel que Z(M™)=Z(M"*t1) la suite
(Z(M?)) converge vers Z(M?®).

Si la limite est une partie non-vide du tableau on est dans le cas 0)i); si
c’est l’ensemble vide M est primitive).

1) s’il existe deux entiers distincts v et s>1 tels que
Z(M’"):Z(MH_S) la suite (Z(M?)) est s-périodique (auquel cas M est impri-
mitive).

Remarque 26.
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La proposition 9 a montré que i) et i) sont équivalents.

8 Galerie d’exemples

Exemple 27.
0110
Soit la matrice M= é (1) 8 (1) , de polynome caractéristique X* —
1110
2X2%-2X
242 2
4 2 o 2 2 2 0 . 47 0
M'=2M"+ 2M= | O [Z(M )=
46 4 2
6 6 4 2
5 3 2 | 2 4 22 5
8 10 6 4
8 12 8 4
6_ons3 2 _ 6 6 4 2| 6)_
MO=2M7?*+4 M +4M~= 10 14 8 6 Z(M®)=g2
14 18 12 6

Comme Z(M?)=7(M?) la suite des supports des zéros est donc constante
a partir de t=5; cette constante est I'infini, M est donc primitive.

Exemple 28.
00001
00011
M=| 0 0 0 0 1 |; polynome caractéristique X°-2X3+ X
01001
00100
0000
00
MP=2M3- M=;Z(M?)= 0
0 0
00 00
00 00
0 0
M6=2M% M2;Z(MS=[ 00 0 0
00
0000
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0000
00
M7—30M3-2 M;Z(M")= 0
0 0
00 00

Z(M")=Z(M?) donc la suite des supports de zéros est ultimement 2-
périodique; nous dirons que la matrice est imprimitive.
Factorisation du polynome minimal X(X2—1)32

o O O
= o O
[N}
_ o

Exemple 29. M = : un polynoéme annulateurest X* —2X2+1,

1000
le reste de la division euclidienne de X° par X*-2X?+1 est égal & 2X3 —
X , le reste de la division euclidienne de X%par X* —2X2+1 est 3X2% —
2, le reste de la division de X" par X*-2X? + 1 est égal a 3X° — 2X,

000 0
3 _ 0 0 2 _ 0 3
yom—m)—=| . Z(3M? —21)~ . et Z(2M3+
00 0
0
2M)=Z (M3 NZ(M la suite des supports de zéros est ulti-
0 O 0

mement périodique de période 2.
Factorisation du polynome minimal (X2 —1)2.

Exemple 30. M = ;son polynodme caractéristique est X* —

4X2, le reste de la division euclidienne de X3 par X*—4X? est égal ¢ X3,
le reste de la division euclidienne de X? par le polynéme caractéristique est
X2, le reste de la division de X par X* —4X?est égal ¢ X.

0 0 0 0
_ 0 0 o 0 0 3N
Or Z(M) = 0 0 Z(M?) = 0 0 ,Z(M?) =
0 0 0 0 0 0
0 0 8 , Z(M3)=Z(M) et Z(M?) # Z(M) ; la suite des supports
0 0

de zéros affiche la méme valeur aux instants 1 et 3 donc la suite des sup-
ports de zéros est ultimement 2-périodique.
Factorisation du polynéme minimal X (X2—4)
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Exemple 31. M = :son polyndéme caractéristique est X* —

— O = O
— = O
_ O O
OO OO

X2 — X, le reste de la division euclidienne de X* par X*— X2 — X est égal
@ X34+2X2+ X, le reste de la division de X© est égal 6 X3+ X%+ X.

0 0 00
_ 000 N 0 0 s
0 0
0 0
00 3 2 o 0 3
0 0 , Z(MAYNZ(M*YNZ(M) est égal a 0 donc Z (M°+
0 0
0
2M?+ M)= 8 , de méme que lintersection Z(M3)NZ(M?); d’ot
0

la suite des supports de zéros affiche la méme valeur aux instants 7 et 6
donc la suite des supports de zéros est ultimement constante.

Exemple 32. M =

Le polynoéme caractéristique de M est X* —2 X% —2X —1, les quotients

de X7 et de X® par le polynome caractéristique sont des polyndmes de

degré 3, pleins, donc Z(M7 )et Z(M®8 ) sont des combinaisons linéaires pleines

de Z(I) , Z(M), Z(M?) et de Z(M?3). Or Uintersection de ces quatre sup-
ports est vide, donc Z(X")=Z(X8) =0.
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On constate que Z(M*)=Z(M), Z(M3)+Z(M),
Z(M?)#Z(M).Lasuite des supports de zéros est donc 3 — périodique.
Le polynéme minimal est X'-2X.

Théoréme 34. Indice d’'mprimitivité et période de la suite des supports de
2€10s

Une matrice non-négative irréductible M est imprimitive si et seulement
la suite des supports de zéros est périodique, de période strictement supé-
rieure @ 1, et dans ce cas la période est égale a lindice d’mprimitivité

Démonstration

On sait [2] que le polynome caractéristique des matrices non-négatives
et irréductibles est de la forme anka;n:l (X* — ), ot k est lindice
d’imprimitivité, m un entier naturel et les w; des scalaires; il nous suffit de
lécrire Z;”:_ll xp, X Rm=P) X —km et Ja vecherche de D'écriture de X* se
fera simplement par la détermination du reste de la division euclidienne de
X! par Z;n:_ll prkar X7—km Q’ot il vient que le reste sera un polyndme
en X, combinaison linéaire de monémes de la forme X*TkP. 11 faut déter-
miner deux colonnes qui contiennent des combinaisons linéaires des mémes
mondmes, ce qui donnera deux supports des zéros qui seront égales.

D’autre part deux colonnes qui contiendront des monémes de degrés non
congrus modulo k ne peuvent représenter d’autres supports des zéros.

Exemple 35.
Le polynéme caractéristique sera supposé minimal -X?+5X6-2X341

Xt Xl() Xll X12 X13

1 5

X 1 5
X2 1

X3 -9

X+ -2 -9
X5 -2

X6 23

X7 5 23
X8 5

Les colonnes qui décrivent respectivement X'° et X3 dans la base du
quotient de K[X] par l'idéal engendré par le polyndme caractéristique se
lisent X-2X4+5X7 et -5+11X4—5X7 d’ou Z(M!0)=Z(M*3).

Par ailleur les colonnes de X', de X2 ne font pas l’affaire, donc
Z(M'0)=Z(M'3) et il n’y a pas de couple de colonnes « plus proches » donc
la périodicité est 3, c’esta dire 'indice de primitivité. [ 1)
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Exercice 1.

Le polynéme caractéristique X12-3X°+11X6-7X3+5
Xt XlO Xll X12 X13 X14 X15 X16 Xl?

1 -15

X3 16

X6 -26
X7 -11 -26
X8 -26

D’oil les colonnes de M3 | deM

Théoréme 36. di a Weilandt [1]
Soit M une matrice non-négative, irréductible
i) si
Vt<(n—1)2+1,Z(C)+ @, M estimprimitive

i1) si la suite des supports de zéros est s-périodique,de période s>1, M est
imprimitive et s est l'indice de primitivité de M.
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