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Résumé

�Frobenius discovered a remarkable connexion between the spec-
tral properties of an irreducible matrix and its zero pattern, that
is the distribution of its zero entries � (Henryk Minc, in � Non-
Negative Matrices �).

L'objet de ce travail est l'étude de l'évolution des zéros qui
s'affichent dans les puissances d'une matrice non-négative.

M, éventuellement N ou A, désignera une matrice à n lignes
et colonnes; lorsque la confusion est possibles nous distinguerons
(au moins dans notre esprit) la matrice � encore vide �, que nous
appellerons � tableau �, de la matrice au sens usuel, lorsque des
valeurs sont assignées aux cases du tableau;

On appellera zéros de M t les termes nuls de ces matrices, on
appellera support des zéros de M t l'ensemble des cases qui affi-
chent la valeur zéro dans la matrice M t et le support de M t sera
noté Z(M t). Les zéros des puissances de M vont être de plusieurs
types, périssables (qui disparaissent avec le temps), persistants
(qui sont nuls pour toute puissance M t) ou périodiques ( la suite
des supports des zéros se répète de manière périodique.

à élaguer
La nature de ces zéros va présenter des correspondances avec

les notions de réductibilité et de primitivité des matrices; en par-
ticulier les zéros persistants se regroupent suivant des structures,
que nous appellerons essaims et qui représentent les obstacles à
l'irréductibilité. La prise en compte des essaims nous permettra
une démonstration élémentaire de la forme normale de Frobenius.
Nous distinguerons le cas où la diagonale de la matrice M est
positive du cas où elle ne l'est pas, ce qui nous permettra d'étudier
la primitivité éventuelle de M ainsi que la périodicité éventuelle de
la suite des supports des zéros.

1 Définitions et conventions de base

Nous nous limiterons à des matrices non-négatives.
Nous conviendrons, une fois pour toutes que "non-négatif" signifie supé-

rieur ou égal à 0 et �positif � signifie strictement supérieur à 0.
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Si M désigne une matrice non-négative on désignera par (i,j) la case du
tableau dont les coordonnées sont x=i,y=j, par m(i;j) la valeur affichée
dans la case (i; j) de M, par M t pour t entier la puissance t-ième de M, par
m(i;j)
[t] la valeur affichée dans la même case de la matrice M t; nous dirons

aussi que la case (i; j) est dans l'état m(i;j)
[t] à l'instant t.

Si nous désignons par Y(M t) la matrice définie par8<: y(i;j)= 1()m(i;j)
[t] =/ 0

y(i;j)= 0()m(i;j)
[t] = 0

, alors Z(MM t)=Z(MY(M t)), donc si

Z(M s)=Z(M t) alors Z(M s+1)=Z(M t+1), ce qui permet de démontrer
par récurrence que 8t 2 N ?;; 9s > 0; Z(M t)=Z(M t+s)=)8k 2 N ;
Z(M t+k)=Z(M t+s+k);.

Reprenant le langage des systèmes dynamiques nous dirons que Z(M t)
décrit l'état d'un système � sans mémoire �.

Dans un premier temps nous ne considérerons (sauf indication contraire)
que des matrices à diagonale positive.

Nous appellerons zéro persistant une case (i,j) telle que pour tout t
m(i;j)
[t] =0 et zéro périssable une case (i,j) telle que {t2N, m(i;j)

[t] =0 } est
borné.

La section 2 d'essence topologique introduit la notion de support des zéros
pour étudier les ensembles qu'ils forment. Nous verrons que si la matrice
considérée est à diagonale positive la suite des supports des zéros Z(M t)
est décroissante et ultimement stationnaire; à chaque incrémentation de t
disparaît au moins un zéro périssable.

La section 3 introduit la notion d'essaim, sous-matrice de taille p� (n¡
p) associée à deux ensembles d'indices complémentaires et établit que les
configurations de nuls persistants sont les réunions d'essaims nuls.

La section 4 établit dans le cas d'une matrice non-négative à diagonale
positive l'équivalence entre la réductibilité et la présence d'essaims nuls; il est
à noter que le lien entre réductibilité et présence d'une sous-matrice extraite
de taille p�(n¡ p) , associée à deux ensembles d'indices complémentaires,
est connu, mais pas le statut persistant des zéros qu'elles affichent.

La section 5 est consacrée à une démonstration élémentaire du Théorème
de la forme normale de Frobenius pour une matrice non-négative, à diago-
nale positive ou nulle.

La section 6 considère le cas des matrices non-négatives à diagonale
non positive; à la correspondance réductible-présence d'essaims nuls s'ajoute
celle entre matrices primitives et absence de zéros périodiques.

La � semi-positivité � de la diagonale, c'est à dire le cas où un des termes
de la diagonale au moins est positif, est une condition nécessaire,mais non
suffisante de primitivité.

La section 7 est essentiellement consacrée au cas où la diagonale est nulle.
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La section 8 porte sur la question de la périodicité éventuelle de la suite
des supports des zéros de la suite (M t).

2 Un regard topologique

Définition 1. Support des zéros d'une matrice
Soit une matrice A à n lignes et colonnes on appelle support des zéros

de A, que l'on notera Z(A), l'ensemble des cases (i; j)2f1; ::; ng2 qui sont
dans l'état nul.

Proposition 2. Une petite grammaire pour la fonction Z

Soit M,N deux matrices non-négatives et k 2Z�
i) Z (kM)=Z(M),
ii) Z (M +N)=Z(M)\Z(N):
iii) si M-N est non négative Z(M-N) est l'ensemble des (i,j) tels que
mi;j=ni;j.

Démonstration. La première affirmation est évidente. La seconde découle
du fait simple que la somme de deux entiers naturels n'est nulle que si et
seulement si les deux sont nuls. La troisième découle directement de la
définition. �

Définition 3. Distance entre points de f1; ::; ng2, distance de Hausdorff de
deux parties de f1; ::; ng2 associée à cette distance

Soient (x= (x1; x2); y = (y1; y2)) on désignera leur distance par d (x;
y)= jx1¡ y1j+ jx2¡ y2j.

Soient deux parties A et B de [1; ::; n]2, on appellera distance de Haus-
dorff de A et B la borne inférieure de f�; 8a2A; 9b2B; d (a; b)<�g et de
f�; 8b2B; 9a2A; d (a; b)< �g (nous admettrons qu'il s'agit d'une distance
sur l'ensemble des parties du tableau f1; ::; ng2. [6]

Proposition 4. Une suite (Zt; t2N∗) de parties de f1; ::; ng2 converge au
sens de Hausdorff si et seulement si il existe t0, tel que 8t� t0; Zt=Zt0.

Démonstration. Il suffit de remarquer que dans notre cas la distance de
Hausdorff est nécessairement un entier non négatif. �

Définition 5.
Soient M une matrice non-négative et la case (i; j)2 [1; ::;n]2, dans l'état

nul à l'instant t, on dira qu'il s'agit d'un zéro persistant lorsque 8k 2N∗;

m(i;j)
[k] =0, ce sera un zéro périssable lorsque 9t02N∗;8t> t0;m(i;j)

[k] =1.

Lemme 6.
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Soit M une matrice non-négative à diagonale positive la suite des sup-
ports de zéros est décroissante et minorée par l'ensemble vide; si le nombre
de zéros périssable est t1 alors 8t� t1; Z(M t)=Z(M t1).

Démonstration. Dans le cas de diagonale positive alors par définition,
m(u;v)
[t+1]=m(u;v)

[t]
m(v;v)+

P
k=/ v

m(u;k)
[t]

m(k;v), or chacun des termes du membre

de droite est non négatif, sauf m(v;v) etm(u;v)
[t] qui sont positifs doncm(u;v)

[t]
>

0)m(u;v)
[t+1]

> 0.
Donc si (i; j) appartient à (Z(M [t+1])) alors (i; j) appartient aussi à

(Z(M [t])), d'où la suite (Z(M [t]; t2N�) est décroissante au sens de l'inclu-
sion.

Comme c'est une suite monotone à valeurs dans un ensemble fini, elle
est alors convergente et nous avons vu plus haut qu'une suite, convergente
pour la distance de Hausdorff dans l'ensemble des parties de f1; ::; ng2, est
constante à partir d'un certain rang, c'est-à-dire qu' il existe un rang t à
partir duquel les supports de zéros sont identiques, éventuellement vides.

De plus dans le cas d'une matrice non-négative à diagonale positive les
zéros ne peuvent pas apparaître mais ils peuvent disparaître.

Nous avons vu que le système est � sans mémoire �, par suite si à l'ins-
tant t0 aucun zéro ne � disparaît �, alors Z(M [t0])=Z(M [t0+1]), d'où Z reste
constante à partir de t0, ce qui signifie qu'à partir de t0, il ne reste plus que
des zéros persistants. �

Exemple 7. On considère la matrice

Soit M =

0BBBB@
1 0 1 0
0 1 0 1
0 0 0 1
1 1 1 1

1CCCCA� M2=

0BBBB@
1 0 1 1
1 2 1 2
1 1 1 1
2 2 2 3

1CCCCA, M3=

0BBBB@
2 1 2 2
3 4 3 5
2 2 2 3
5 5 5 7

1CCCCA,

Inutile de continuer, le support Z(M3) est l'ensemble vide, la suite des sup-
ports de zéros est convergente vers l'ensemble vide.

Exemple 8.

Z(M [t]) tend vers l 0union des essaims nuls (voir section suivante)

M =

0BBBB@
1 1 1 1
0 1 0 1
1 0 1 0
0 1 0 1

1CCCCA, M2=

0BBBB@
2 3 2 2
0 2 0 2
2 1 2 1
0 1 0 2

1CCCCA, et M3=

0BBBB@
4 7 4 7
0 3 0 4
1 1 1 1
0 3 0 4

1CCCCA, L'égalité

Z (M2)=Z(M) entraîne que la suite des supports de zéros est (ultimement)

constante et égale à

0BBBB@ 0 0

0 0

1CCCCA ou f(2; 1); (2; 3); (4; 1); (4; 3)g.
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En résumé:

diagonale positive

essaim nul =)Z(M t) tendvers l 0uniondes essaimsnuls (voirsection sui-
vante)

pas d'essaim nul=)Z(M t) tend vers l 0ensemble vide

3 Les zéros persistants des matrices non-néga-
tive à diagonale positive.

Comme nous considérons le cas de matrices non-négative à diagonale posi-
tive nous pourrons supposer que la matrice considérée ne comporte plus que
des zéros persistants.

Définition 9. essaim

Soient M une matrice non-négative à n lignes et colonnes et une partition
(I ; J) de l'ensemble des indices f1; ::; ng, on désignera par TI;J le sous-
tableau de T obtenu en effaçant les lignes dont le numéro est dans J et les
colonnes dont le numéro est dans I et par MI ;J la sous-matrice obtenue en
affectant des valeurs aux cases de TI;J. MI ;J sera appelé un essaim, nous
nous intéresserons particulièrement aux essaims nuls.

Proposition 10.
Soit une matrice non-négative M et un essaim nul MI ;J alors l'essaim

MI ;J
2 est nul

Démonstration.
Soit un essaim nul MI ;J et considérons une case (u,v) de TI ;J, ce qui

signifie que u2I et v2J , si cette case affiche dans a la valeur a(u;v), la valeur
affichée dans cette même case de A2 sera a[2](u;v)=

P
k2[1;::;n] a(u;k) a(k;v),

qui s'exprimera, comme (I ; J) est une partition de f1; :::; ng, sous la formeP
k2I a(u;k) a(k;v)+

P
k2J a(u;k)a(k;v).

Si k appartient à I, comme v appartient à J, a(k;v)= 0 et si k appartient
à J, comme u appartient à I, a(u;k)

[2] =0, d'où la valeur affichée dans la case
(u,v) de A2 est nulle.

De même, comme (I,J) forment une partition de {1,..,n}, AIJ
2 =0 entraî-

nera AIJ
4 =0 et, de manière générale, IJA=0 entraîra AIJ

2t=0.

Les zéros persistants des matrices non-négative à diagonale positive. 5



D'autre part la décroissance de la suite (Z(A2
t
)) qui découle du raison-

nement du lemme 6 permet de conclure que les cases de l'essaim sont nulles
à tout ordre ce qui démontre que les cases de l'essaim nul AIJ sont des zéros
persistants. �

Théorème 11.
Soit A une matrice non-négative à diagonale positive, si une droite (ligne

ou colonne) comporte p (supérieur ou égal à 1) zéros persistants il existe
un essaim nul qui les contient et tout essaim nul est un ensemble de zéros
persistants.

Démonstration.
Nous étudierons le cas d'une colonne, celui de la ligne est analogue.
Soit le point (i,j) et supposons que p cases de la ième colonne dont la

case (i,j) portent des zéros persistants d'où les deux ensembles d'indices I
de cardinal p, défini par I={u,a(u;j)= a(u;j)

[2] =0} et J={k,a(k;j)=1}.

Ainsi défini le couple (I,J) est une partition de {1,..,n} et I désigne les
zéros de A qui se trouvent sur la colonne (de At) qui contient le point (i,j).

De son côté quel que soit u2I a(u;j)
[2] =

P
k2[1;::;n] a(u;k) a(k;j) d'oùP

k2[1;::;n] a(u;k) a(k;j)=0 que l'on peut décomposer en
P

k2I a(u;k) a(k;j)+P
k2J a(u;k) a(k;j)=0, qui se simplifie, en tenant compte des définitions de

I et J , en 0+
P

k2J a(u;k) 1:
D'où
8u2 I ;8k2J ; a(u;k)=0, ce qui signifie que J désigne des zéros de A qui

se trouvent sur la ligne qui contient le point (i,j) et, comme u décrit I et k
décrit J, la matrice extraite AI ;J est nulle.

Réciproquement soit un essaim nul AI ;J et considérons une case (u,v)
de TI ;J, ce qui signifie que u 2 I et v 2 J . Si sa valeur à l'instant t=1 est
a(u;v), à l'instant 2 ce sera

P
k2[1;::;n] a(u;k) a(k;v), qui s'exprimera, comme

(I ; J) est une partition de f1; :::; ng, sous la forme
P

k2I a(u;k) a(k;v) +P
k2J a(u;k)a(k;v).

Si k appartient à I, comme v appartient à J, a(k;v)= 0 et si k appartient
à J, comme u appartient à I, a(u;k)=0, d'où la valeur de la case (u,v) de A2

est nulle.
On conclut comme dans la proposition 10.

Par suite, comme (I,J) forment une partition de {1,..,n}, AI ;J = 0
et AI ;J

2 =0 entraînent AI ;J3 =0 et, de manière générale, AI ;J=0 et AI ;J
t =

0 entraînent AI ;J
t+1= 0; ce qui démontre , par récurrence, que les cases de

l'essaim nul AI;J sont des zéros persistants.
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�

Exemple 12. Dans la matrice ci-dessous on voit un essaim nul de 2 lignes
et 4 colonnes, un essaim nul de 3 lignes et 3 colonnes et un essaim nul de

5 lignnes et une colonne. M =

0BBBBBBBBBBBBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 1 0 1

1CCCCCCCCCCCCCCCCA
.

On peut alors étendre cette caractérisation aux matrices non-négatives
qui ont une diagonale nullle:

Théorème 13. diagonale nulle et zéros persistants
Soit une matrice non-négative à diagonale nulle, M et N=M+I.
Quel que soit le couple (i,j), où i=/ j (i,j) est un zéro persistant pour M

si seulement si il l'est pour N.
La suite (Z(M t)) tend vers une limite non vide si et seulement il en est

de même pour la suite (Z(N t)) et ces deux limites sont égales.

Démonstration. Soit une case (i,j) hors diagonale, pour tout entier positif
t N t=

P
k2f0; : : : ;tg

�
t
k

�
Mk, d'où l'équivalence 8k 6 t; n(i;j)

[k] = 0()8k6 t;

m(i;j)
[k] =0; par suite (i,j) est un zéro persistant de N si et seulement il l'est

pour M, or comme N est à diagonale positive les zéros persistants de N sont
les cases d'un essaim nul, donc il en est de même pour M et la limite de la
suite des supports de zéros de M est la limite de la suite analogue pour N,
c'est à dire la réunion des essaim nuls.

Ce qui permet d'étendre la définition d'essaims nuls aux matrices non-
négatives à diagonale nulle.

�

Question 1.
Etant donnée une matrice non-négative M comment trouver un essaim

nul, s'il y en a ?

Comme on l'a vu au dessus on peut supposer qu'il ne reste que des
zéros persistants; les essaims étant définis par la donnée de deux intervalles
complémentaires dans {1,..,n}nous allons opérer comme suit:

Les zéros persistants des matrices non-négative à diagonale positive. 7



Choisir un sous-ensemble de {1,..,n} que l'on désignera par I, déterminer
le complémentaire de I dans {1,..,n} que l'on désignera par J, si MI ;J est
nul c'est un essaim nul, sinon considérer un autre sous-ensemble I.

Exemple 14.

Soit M=

0BBBBBBBB@
1 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0

1CCCCCCCCA.
Si on considère la colonne 1 I={2,3,4} d'où J={1,5} et Mf2;3;4g;f1;5gJ=0BBBBBBBB@
0 0
0 1
0 1

1CCCCCCCCA qui n'est pas nulle; aucun autre raisonnement sur les lignes ne

nous indiquera d'essaim nul.

Raisonnement sur les colonnes

Si considèe la colonne 1 I={3,4,5} et alors J={1,2} et Mf1;2g;f3;4;5g=0BBBBBBBB@
0 0 0
0 0 0

1CCCCCCCCA, qui est donc un essaim nul.

4 Matrices non-négatives réductibles et Essaims
nuls

Lemme 15. Soit M une matrice non-négative, elle possède des zéros per-
sistants si et seulement si il existe une matrice de permutation P telle que
tPMP =

�
B C
0 D

�
, où B et D sont des matrices carrées.

Démonstration. Soit M une matrice non-négative qui contient des zéros
persistants et, par suite, un essaim nul M I ;J .
Une partie de {1,..,n} sera appelée "segment initial" si son minimum est égal
à 1 et si elle est connexe dans {1,..,n}, elle sera appelée "segment final" si
son maximum est égal à n et si elle est connexe dans {1,..,n}.
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Rappelons que I indexe les lignes de MI ;J et J indexe les colonnes de
MI ;J . Une sous-matriceMI ;J occupera le coin Sud-Ouest si et seulement si I
est un segment final et J un segment initial; Notre objectif sera donc atteint
lorsque I sera devenu un segment final (et par conséquent J sera devenu un
segment initial).

Nous allons construire la permutation P comme produit de transposi-
tions. Tant que I n'est pas un segment final (et que J n'est pas un segment
initial) effectuons sur les colonnes de M la transposition P = (m i n(I);
max ({[1;::;n] I) qui se traduit par I:I¡min(I)+max(J) J :J ¡max(J)+
m i n(I). Comme le minimum de I croit strictement (et celui de J décroit
strictement) la procédure s'arrête; à ce moment I est un segment final, J est
un segment initial, les zéros de l'essaim sont regroupés en un bloc Sud-Ouest.
Par ailleurs la conjugaison par P conserve les tailles des sous-matrices,
donc le bloc Sud-Ouest obtenu est de taille p�n¡ p, par suite les matrices
B et D sont carrées.
Réciproquement si on considère une décomposition en blocs N =�
B C
0 D

�
, où B et D sont carrées de côtés respectif n-p et p, le produit par

blocs montre que les zéros du bloc Sud-Ouest sont persistants, la multipli-
cation par P à droite et par tP à gauche consistant à renuméroter les vecteurs
de la base canonique, les zéros de N correspondent aux zéros de tP N P
donc ce sont des zéros d'ordre infini, ce qui entraîne l'existence d'essaims
nuls. De plus nous avons aussi obtenu P comme composée de transposi-
tions; cette procédure sera appelée "procédure de relocalisation". �

Définition 16. Matrices réductibles M 2MnR
�+) est dite réductible s'il

existe une matrice de permutation P telle que tPMP =
�
B C
0 D

�
où (B;

D)2MpR
+�)�Mn¡pR

+�) et C 2Mp;n¡pR
+�). Une matrice irréductible

est une matrice qui n'est pas réductible.

Nous avons montré juste au-dessus qu' une matrice non-négative M à
diagonale positive est réductible si et seulement si elle possède un essaim
nul MI ;J.

Aux diverses caractérisations classiques de la réductibilité (ou de l'irré-
ductibilité) [1] nous ajouterons la suivante:

Théorème 17. Une matrice non-négative M est réductible si et seulement
si elle possède un essaim nul MI ;J

Il pourrait être intéressant de comparer la complexité en moyenne de
la recherche d'un essaim nul (un seul suffit pour que la matrice ne soit pas
irréductible) avec la complexité de l'étude de la connexité forte nécessaire
pour déterminer, de manière classique, la réductibilité.

Matrices non-négatives réductibles et Essaims nuls 9



Par ailleurs on remarquera que si l'existence de sous-matrices de la
forme MI ;J, où (I,J) est une partition de {1,2, . . . ,n}, n'est pas nouvelle ces
matrices n'ont pas été étudiées en elles-mêmes. [4]

5 Le Théorème sur la forme normale de Frobe-
nius (s'appuye sur ce qui précède mais sans
effet sur ce qui suit)

Nous pouvons désormais démontrer le

Théorème 18. Le Théorème de Frobenius
Soit M une matrice non-négative dont les zéros sont d'ordre infini, il

existe une matrice de permutation P telle que tPMP est de la forme0BBBBBBBBBB@
M11 M12 :: :: M1p

0 M22 :: :: M2p

0 0 M33 :: M3p

0 :: :: ::
0 0:: :: :: Mpp

1CCCCCCCCCCA, où les blocs Mii sont irréductibles.

L'ensemble des blocs de la diagonale est unique, à l'ordre près.

Démonstration. On appellera f l'endomorphisme représenté dans la base
canonique de l'espace M par la matrice A.

On reprend la procédure de relocalisation qui fournit une matrice de

permutation P telle que tPMP =
�
B C
0 D

�
, si B n'est pas irréductible on

lui applique la relocalisation d'où une matrice de permutation R telle que

tRBR=
�
B1 C1
0 D1

�
et on remplace B en conséquence. On opère de même

avec D si celle-ci n'est pas irréductible. On continue ainsi tant qu'appa-
raissent des matrices réductibles. En fin de compte il existe une matrice de

permutation T telle que tTMT est de la forme

0BBBBBBBBBB@
M11 M12 :: :: M1p

0 M22 :: :: M2p

0 0 M33 :: M3p

0 :: :: ::
0 0:: :: :: Mpp

1CCCCCCCCCCA,
où les blocs Mii sont irréductibles. L'irréductibilité des blocs de la dia-
gonale découle de la procédure choisie: lorsqu'un bloc carré est créé, s'il n'est
pas irréductible il possède un essaim et on procède à sa relocalisation. �

Si la démonstration présentée ici pour la forme normale semble intéres-
sante car elle est élémentaire et ne nécessite pas d'éléments de la théorie
des graphes, le Théorème établit aussi dans sa forme classique l'unicité (à
l'ordre près) de la famille des blocs diagonaux; le lecteur est renvoyé
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Démonstration. rs non-négative à diagonale positive, on peut lui appliquer
le Théorème: il existe une matrice de permutation T telle que tTBT est sous

forme normale

0BBBBBBBBBB@
M11 M12 :: :: M1p

0 M22 :: :: M2p

0 0 M33 :: M3p

0 :: :: ::
0 0:: :: :: Mpp

1CCCCCCCCCCA. Par suite tTAT=tTBT ¡ I=

0BBBBBBBBBB@
M11¡ I M12 :: :: M1p

0 M22¡ I :: :: M2p

0 0 M33 I :: M3p

0 :: :: ::
0 0:: :: :: Mpp

1CCCCCCCCCCA et ce sera la forme normale de A si

on prouve que les Mii¡ I sont bien des matrices irréductibles. Si Mii¡ I=�
U V
0 W

�
alors Mii=

�
I +U V
0 W + I

�
ce qui contredirait l'irréductibilité

de Mii.
Mii¡ I sera à termes non-négatifs si et seulement si les termes de la

diagonale de Mii sont positifs: considérons deux matrices carrées U et V
et une matrice de permutation P telle que U =P¡1 VP , U décrit le même
endomorphisme que V mais relativement à des bases qui se correspondent ,
à leur numérotation près, ce qui signifie que les termes de la diagonale de U
et ceux de celle de V sont identiques, à l'ordre près.

Par suite les termes des diagonales des matrices Mii sont identiques,
à l'ordre près, à ceux de la diagonale de B qui sont supérieurs ou égaux
à 1. Donc les matrices Mii ¡ I sont non-négatives, ce qui entraîne que
tTAT =tTBT ¡ I est de la forme0BBBBBBBBBB@

M11¡ I M12 :: :: M1p

0 M22¡ I :: :: M2p

0 0 M33¡ I :: M3p

0 :: :: ::
0 0:: :: :: Mpp¡ I

1CCCCCCCCCCA. �

6 Le cas d'une matrice non-négative à diago-
nale non positive

Désormais nous supposerons que la diagonale de M comporte au moins un
zéro; la notion de matrice primitive sera désormais centrale.

Définition 19. Une matrice non-négative M est dite primitive lorsqu'il
existe un entier positif m tel que Mm> 0 et le plus petit m pour lequel cette
inégalité est vraie est appelé indice de M. On voit aisément qu'une matrice
doit être irréductible pour être primitive.

Le cas d'une matrice non-négative à diagonale non positive 11



Une matrice irréducible qui n'est pas primitive , est appelée imprimitive.

Théorème 20. Une matrice M est primitive si et seulement si ses zéros
sont périssables.

Théorème 21. La suite des supports de zéros et la primitivité

Soit une matrice non-négative et irréductible M les deux propriété sui-
vantes sont équivalentes:

i) M est primitive
ii) la suite des supports de zéros tend vers l'ensemble vide

Théorème 22.
Une matrice non-négative irréductible, dont l'un des termes de la diago-

nale au moins est positif, est primitive. [4]

Démonstration.
Soit k tel que mk;k>0 pour tout j il existe un entier ti tel que

mti
i;k>0,par suite pour tout entier t supérieur à l'ensemble (fini) des ti

mt
i;k>0:Demême il existe un entier s tel que pour tout entier supérieur

à s mt
k;j>0: D 0où m2t

i;j>0: �

D'où, si une matrice non-négative et irréductible est imprimitive sa dia-
gonale est nulle; attention cette condition n'est pas suffisante pour que
la matrice soit imprimitive: la matrice suivante est non-négative, irré-
ductible, sa diagonale est nulle mais on pourra vérifier qu'elle n'est pas
imprimitive (par exemple au moyen des méthodes des sections suivantes):

M=

0BBBB@
0 1 1 0
1 0 0 0
0 1 0 1
0 0 1 0

1CCCCA
Comme il y avait un indicateur sur le moment de disparition des zéros

périssables (section 2) il existe un indicateur pour qui veut savoir, dans le
cadre de l'irréductibilité, si il y a primitivité ou imprémitivté.

Proposition 23.
Si M est une matrice non-négative et imprimitive son exposant est infé-

rieur ou égal à (n-1)2+1. [5]

Donc le cas d'une matrice non-négative irréductible, et dont la diagonale
possède entre 1 et n-1 termes non nuls, est résolu.

Il ne reste plus que le cas d'une matrice non-négative, irréductible et à
diagonale nulle.
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7 Sur la période
Le tableau que nous considérons est fini donc les supports des zéros
appartiennent à un ensemble fini, par suite il existe nécessairement deux
entiers distincts s<t tels que Z(Ms)=Z(M t), qui entraîne Ms=M t , puis
Z(Ms+1)=Z(M t+1) . . .

D'où
Si M est une matrice non-négative et s'il existe deux entiers distincts s<t

tels que Z(Ms)=Z(M t) la suite des supports des zéros est périodique.

Pour déterminer la période de la suite des supports des zéros:

Proposition 24.
On exprimera les matrices de la forme M t comme combinaison linéaire

des matrices (I,M,..,M r¡1) où r est le degré du polynôme minimal de M.
Lorsque deux puissances M t0 et M t 00 s'expriment comme combinaisons

linéaires des mêmes matrices de la base (I,M,..,M r¡1) avec des coefficients
non nuls on en concluera qu'elles ont le même support de zéros.

Alors |t'-t�| est candidat pour désigner la période de la suite; il suffira
de rechercher s'il existe un autre couple, � inférieur �, pour déterminer la
plus petite période.

Démonstration.
Soit Xt 0=

P
k=1
r¡1 �kXk que nous traduisons en M t 0=

P
k=1
r¡1 �kMk, que

nous pouvons réordonner en M t 0=
P

�k>0
�kM

k-
P

�k<0
e�kdMk, où M t 0,

en tant que puissances d'une matrice non-négative, est non-négative.
Nous sommes donc le cas iii) de la proposition 6, Z(M t0)=

�
(i; j);P

�k>0
�km(i;j)

[k] =
P

�k<0
j�kjm(i;j)

[k] 	
.

�

Théorème 25.
Soit une matrice non-négative M
o) la suite (Z(M t)) est bornée
i) si M contient un essaim nul la suite (Z(M t)) converge vers la réunion

des essaims nuls.
ii) s'il existe un entier positif t0 tel que Z(M t0)=Z(M t0+1) la suite

(Z(M t)) converge vers Z(M t0).
Si la limite est une partie non-vide du tableau on est dans le cas o)i); si

c'est l'ensemble vide M est primitive).
iii) s'il existe deux entiers distincts r et s>1 tels que

Z(M r)=Z(M
r+s

) la suite (Z(M t)) est s-périodique (auquel cas M est impri-
mitive).

Remarque 26.

Sur la période 13



La proposition 9 a montré que i) et ii) sont équivalents.

8 Galerie d'exemples

Exemple 27.

Soit la matrice M=

0BBBB@
0 1 1 0
1 0 0 0
0 1 0 1
1 1 1 0

1CCCCA; de polynome caractéristique X4 ¡

2X2¡ 2X

M
4
=2M

2
+ 2M=

0BBBB@
2 4 2 2
2 2 2 0
4 4 2 2
4 6 4 2

1CCCCA;Z(M 4
)=

0BBBB@ 0

1CCCCA

M5= 2M 3
+ 2M

2
=

0BBBB@
6 6 4 2
2 4 2 2
6 8 6 2
8 10 6 4

1CCCCA; Z(M5)=?

M6=2M3+4 M
2
+4M=

0BBBB@
8 12 8 4
6 6 4 2
10 14 8 6
14 18 12 6

1CCCCA;Z(M6)=?

Comme Z(M5)=Z(M6) la suite des supports des zéros est donc constante
à partir de t=5; cette constante est l'infini, M est donc primitive.

Exemple 28.

M=

0BBBBBBBB@
0 0 0 0 1
0 0 0 1 1
0 0 0 0 1
0 1 0 0 1
0 0 1 0 0

1CCCCCCCCA; polynome caractéristique X5-2X3+ X

M5=2M3- M=;Z(M5)=

0BBBBBBBB@
0 0 0 0
0 0

0
0 0
0 0 0 0

1CCCCCCCCA

M6=2M4- M2 ; Z(M6)=

0BBBBBBBB@
0 0 0 0
0 0
0 0 0 0
0 0
0 0 0 0

1CCCCCCCCA
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M7=3M3-2 M;Z(M7)=

0BBBBBBBB@
0 0 0 0
0 0

0
0 0
0 0 0 0

1CCCCCCCCA
Z(M7)=Z(M5) donc la suite des supports de zéros est ultimement 2-

périodique; nous dirons que la matrice est imprimitive.
Factorisation du polynôme minimal X(X2¡1)2

Exemple 29. M=

0BBBB@
0 0 0 1
0 0 1 0
0 1 0 1
1 0 0 0

1CCCCA; un polynôme annulateurest X4¡2X2+1,

le reste de la division euclidienne de X5 par X4-2X2+1 est égal à 2X3¡
X , le reste de la division euclidienne de X6 parX4¡ 2X2+1 est 3X2¡
2; le reste de la division de X7 par X4-2X2 + 1 est égal à 3X3 ¡ 2X,

Z(3M3¡M)==

0BBBB@
0 0 0
0 0

0 0
0 0 0

1CCCCA , Z(3M2¡ 2I)=

0BBBB@
0
0
0
0

1CCCCA et Z(2M3+

2M)=Z(M3)\Z(M)=

0BBBB@
0 0 0
0 0

0 0
0 0 0

1CCCCAla suite des supports de zéros est ulti-

mement périodique de période 2.
Factorisation du polynomeminimal (X2¡ 1)2.

Exemple 30. M =

0BBBB@
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1CCCCA;son polynôme caractéristique est X4¡

4X2, le reste de la division euclidienne de X3 par X4¡ 4X2 est égal à X3,
le reste de la division euclidienne de X 2 par le polynôme caractéristique est
X 2, le reste de la division de X par X4¡ 4X2est égal à X.

Or Z(M ) =

0BBBB@
0 0
0 0

0 0
0 0

1CCCCA,Z (M 2) =

0BBBBBB@
0 0

0 0
0 0

0 0

1CCCCCCA,Z (M 3) =0BBBBBB@
0 0
0 0

0 0
0 0

1CCCCCCA, Z(M3) = Z(M) et Z(M2) =/ Z(M) ; la suite des supports

de zéros affiche la même valeur aux instants 1 et 3 donc la suite des sup-
ports de zéros est ultimement 2-périodique.

Factorisation du polynôme minimal X(X 2¡4)
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Exemple 31. M =

0BBBB@
0 1 1 0
1 0 0 0
0 1 0 0
1 1 1 0

1CCCCA;son polynôme caractéristique est X4¡

X2¡X, le reste de la division euclidienne de X7 par X4¡X2¡X est égal
à X3+2X2+X, le reste de la division de X6 est égal à X3+X2+X.

Or Z(M ) =

0BBBB@
0 0
0 0 0

0 0 0
0

1CCCCA,Z (M 2) =

0BBBBBB@
0 0

0 0
0 0 0

0

1CCCCCCA,Z (M 3) =

0BBBBBB@
0

0 0
0 0

0

1CCCCCCA, Z(M3)\Z(M2)\Z(M) est égal à

0BBBB@
0
0
0
0

1CCCCAdonc Z (M3+

2M2+M)=

0BBBB@
0
0
0
0

1CCCCA, de même que l'intersection Z(M3)\Z(M2); d'où

la suite des supports de zéros affiche la même valeur aux instants 7 et 6
donc la suite des supports de zéros est ultimement constante.

Exemple 32. M =

0BBBB@
0 1 1 1
0 0 1 0
1 1 0 0
0 1 1 0

1CCCCA
Le polynôme caractéristique de M est X4¡ 2X2¡ 2X ¡ 1, les quotients

de X7 et de X8 par le polynôme caractéristique sont des polynômes de
degré 3, pleins, donc Z(M7 )et Z(M8) sont des combinaisons linéaires pleines
de Z(I) , Z(M), Z(M2) et de Z(M3). Or l'intersection de ces quatre sup-
ports est vide, donc Z(X7)=Z(X8)= ;:

Exemple 33.0BBBB@
0 1 0 0
0 0 1 0
1 0 0 1
0 1 0 0

1CCCCA.
polynôme caractéristique est X4¡ 2X.
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On constate que Z(M4)=Z(M), Z(M3)=/Z(M ),
Z(M2)=/Z(M):La suite des supports de zéros est donc 3¡ périodique:

Le polynôme minimal est X
4¡ 2X .

Théorème 34. Indice d'mprimitivité et période de la suite des supports de
zéros

Une matrice non-négative irréductible M est imprimitive si et seulement
la suite des supports de zéros est périodique, de période strictement supé-
rieure à 1, et dans ce cas la période est égale à l'indice d'mprimitivité

Démonstration
On sait [2] que le polynôme caractéristique des matrices non-négatives

et irréductibles est de la forme Xn¡kmQ
j=1
m (Xk ¡$j), où k est l'indice

d'imprimitivité, m un entier naturel et les $j des scalaires; il nous suffit de
l'écrire

P
p=1
m¡1xpX

n¡k(m¡p)+Xn¡km et la recherche de l'écriture de X t se
fera simplement par la détermination du reste de la division euclidienne de
Xt par

P
p=1
m¡1xpX

kp+Xn¡km, d'où il vient que le reste sera un polynôme
en X, combinaison linéaire de monômes de la forme Xi+kp. Il faut déter-
miner deux colonnes qui contiennent des combinaisons linéaires des mêmes
monômes, ce qui donnera deux supports des zéros qui seront égales.

D'autre part deux colonnes qui contiendront des monômes de degrés non
congrus modulo k ne peuvent représenter d'autres supports des zéros.

Exemple 35.
Le polynôme caractéristique sera supposé minimal -X9+5X6-2X3+1

Xt X10 X11 X12 X13

1 5
X 1 5
X2 1
X3 -9
X4 -2 -9
X5 -2
X6 23
X7 5 23
X8 5
..

Les colonnes qui décrivent respectivement X10 et X13 dans la base du
quotient de K[X] par l'idéal engendré par le polynôme caractéristique se
lisent X-2X4+5X7 et -5+11X4¡ 5X7 d'où Z(M10)=Z(M13).

Par ailleur les colonnes de X11 , de X12 ne font pas l'affaire, donc
Z(M10)=Z(M13) et il n'y a pas de couple de colonnes � plus proches � donc
la périodicité est 3, c'està dire l'indice de primitivité. [ ] ).
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Exercice 1.

Le polynôme caractéristique X12-3X9+11X6-7X3+5

Xt X10 X11 X12 X13 X14 X15 X16 X17

1 -15
X -5 -15
X2 -5 -15
X3 16
X4 7 16
X5 7 16
X6 -26
X7 -11 -26
X8 -26
X8

X9 -2
X10 3 -2
X11 3 -2
X12

X13

X14

X15

X16

X17

D'où les colonnes de M13 , deM

Théorème 36. dû à Weilandt [1]
Soit M une matrice non-négative, irréductible
i) si

8t6 (n¡ 1)2+1; Z(C)=/ ?;M est imprimitive

ii) si la suite des supports de zéros est s-périodique,de période s>1, M est
imprimitive et s est l'indice de primitivité de M.
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